Dispatching vs. Scheduling – Exploring Methods for Enhanced Fab Performance

Manfred Austen
CEO
Content
Dispatching vs. Scheduling – Methods for Enhanced Fab Performance

• (1) Challenge: "Optimal" Manufacturing?
 – Classification and definition of „manufacturing"
 – Requirements of „optimal" manufacturing !?

• (2) Optimization of Manufacturing Performance
 – 1. Perspective: Long-term goals
 – 2. Perspective: Precise, measurable and agreed performance indicators
 – 3. Survey: Ranking of important indicators
 – 4. Perspective: Influencing factors and variability

• (3) Meaningful and proactive Manufacturing Control
 – Tools for optimizing the manufacturing performance
 – Pursuing a holistic approach
Content
Dispatching vs. Scheduling – Methods for Enhanced Fab Performance

• **(4) Dispatching and Scheduling**
 – Two typical solution methods for manufacturing control
 – Categorization and classification

• **(5) Pre-Requisites & Requirements**
 – Data quality and accuracy
 – Comprehensive reporting and monitoring
 – Simulation
 – Integration [& automation] of Dispatcher / Scheduler / Simulator

• **(6) ... more details ...**
Production = Making (Manufacturing, Processing)

a) Production is a process of combining tangible inputs (raw materials, semi-finished goods, subassemblies) and intangible inputs (ideas, information, knowledge) and transforming them into products (output)

b) In the *engineering literature* the term **Manufacturing** is often used for the industrial discrete final production and the term **Processing** for the chemical production

c) Complementary, production includes services, formation of rights, agricultural commodities, etc.

Manufacturing Types: Batch, Single Unit, Section, Mass, Series, Sorts

Factory: Location of Production

Note: Terms are often used as synonyms
Challenge „Optimal“ Manufacturing
Requirement „optimal“ manufacturing

Challenge: Manufacturing Companies must compete across many dimensions!

Strategy: Achieve an "optimal" production (manufacturing / processing), i.e. balancing
- faster, better, cheaper
- with equal or better quality
- than the competition
- leading through innovation
-

Solution: Achieve a reasonable (optimal) performance and maintain it!

To achieve reasonable production performance is not easy, because:
- “reasonable” performance is not well defined unclear targets
- inconsistent and misunderstood objectives
- non-deterministic production events
- difficult to measure and verify
- the system and optimization problem is very complex
- poor production control procedures and tools
- ...
Optimization of Mfg Performance

1. Perspective: long-term goals

- At first, the impression is of clear, long-term objectives (strategies)
- On closer inspection, imprecise definitions and unfortunately:
 - many
 - different
 - vague
 - inconsistent
 - often contradictory
 - ... strategies?
- Various opinions, perceptions and interpretations ?!
- How to proceed?

“When you two have finished arguing your opinions, I actually have data!”

© 2016 SYSTEMA GmbH / 22.09.16
Optimization of Mfg Performance

2. Perspective: precise, measureable and aligned indicators

Problem 1: How to specify (quantify) and measure precise objectives?

- Each production facility has different goals and ideas of a reasonable performance in figures.
- Examples of performance indicators:
 - Cycle Time
 - Variance of Cycle Time
 - Throughput
 - Flow-Factor
 - Commit to and meet delivery dates
 - Inventory (WIP & Stock)
 - Utilization
 - OEE
 - Setup Effort
 - ...

Problem 2: How do I get this consistently defined and aligned?

- Individual indicators are often not comprehensive, and focus on specific but limited aspects of manufacturing.
- Frequently they are also inversely related, e.g. Cycle Time – Utilization - Inventory.
- Frequently they are inconsistently implemented (e.g. payment of shift personnel by quantities although the overall goal is adherence to delivery dates!)

© 2016 SYSTEMA GmbH / 22.09.16
Optimization of Mfg Performance
Survey: ranking of important indicators

Ranking of Fab Performance Measures

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Time</td>
<td>0%</td>
<td>7%</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67%</td>
<td></td>
</tr>
<tr>
<td>Equipment throughput</td>
<td>0%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38%</td>
<td></td>
</tr>
<tr>
<td>Factory throughput</td>
<td>0%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81%</td>
<td></td>
</tr>
<tr>
<td>Inventory levels</td>
<td>0%</td>
<td>0%</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0%</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td>Labor utilization</td>
<td>31%</td>
<td>6%</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6%</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>On-time delivery</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>OEE</td>
<td>6%</td>
<td>19%</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19%</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Wafer starts</td>
<td>13%</td>
<td>7%</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13%</td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40%</td>
<td></td>
</tr>
</tbody>
</table>

Source: Handbook of Production Scheduling (Jeffrey W. Herrmann)

Not surprising ...
- Factory Throughput and Cycle Times measures rank high
- On-time delivery is increasingly important - lean manufacturing, JIT, etc.
- ... additional measures driven by business constraints

Surprisingly ...
- Equipment Throughput not important but Fab Throughput is important
- Labor utilization lower importance (hard to measure)
- OEE not so important?
- ...
Problem 3: Occurrence of highly variable “Manufacturing Events” are non-deterministic

- Variability is generated by a variety of planned and unplanned events, such as maintenance, failures, sickness, execution errors, processing time, poor planning, etc.
- Many of these events are difficult to influence from an operational perspective

But: manufacturing control can exacerbate these problems

- Which factors can truly be controlled?

Employee’s illness: Not / barely
Equipment Breakdown
Product Mix
Working Plan
Maintenance
Planning & Monitoring
Manufacturing Control

Certainly

© 2016 SYSTEMA GmbH / 22.09.16
Consequence of variability - strong fluctuations within manufacturing lines related to the arrival of material (raw / WIP) and units to be produced

These variations result in wave-like movements of WIP within manufacturing line with resultant loss of production capacity for the particular equipment.
Meaningful and proactive Mfg Control
Tools for optimizing manufacturing performance

Manufacturing Control is one of the most important tools and methods to increase overall manufacturing performance!

- "Production control" means planning, initiating (production starts), monitoring and tracking the execution of released manufacturing orders and production processes.
- The task is to optimize to the extent possible all operations and activities within the production environment:
 - Material procurement, material storage, material supply
 - Control by product / process plan structure, route definition and BOM
 - Planning and execution of manufacturing orders
 - Setting capacity utilization and due dates
 - Accounting for yield loss, mis-processing, and equipment or process related bottlenecks / constraints
 - Equipment allocation with consideration of required and available process capabilities
 - etc.

Source: Wirtschaftslexikon
Meaningful and proactive Mfg Control
Chasing a holistic approach

- Clarification and specification of objectives to be achieved
- Selection and accurate measurement of key performance indicators
- Highest possible level of automation (minimize manual interventions)
- Use of appropriate methods and tools to control manufacturing (for example, scheduling, dispatching, ...)

Sensible Manufacturing Control

+

Acting instead of Reacting (proactive)

- Planning and coordination of production factors such as ...
 - Maintenance
 - Workforce
 - Bottleneck Management
 - Production planning
 - Operational Control
- Continuously (dynamically) adapting the production control to known issues
- Ensuring resp. enforcing data quality
Dispatching and Scheduling are two frequently used tools and processes for meaningful and proactive manufacturing control. They are often incorrectly used as synonyms.

Dispatching and **Scheduling** are two typical solution methods for manufacturing control.

Is scheduled
- Method of calculating resource loading (tasks, resources, constraints)
- Plan for a period = \([t_1 : t_2]\)
- Every 15 min – 8 h; lasts min - h
- Increased level of abstraction of manufacturing models and states

Is dispatched
- Method for determining sequencing of tasks / resources
- Prioritization at the time = t0
- Continuously in real time; immediately
- Highly detailed / precise manufacturing relevant models and states (for example, "Process Capabilities")
Instruments Dispatching and Scheduling

Categorization and classification

Level 1: Production Plan
In the long term (½ - 2 years)
Static (throughput, availability, ..)
On demand

Level 2: Capacity and demand plan
In the long term (months - ½ year)
Static (throughput, availability, ..)
On demand

Level 3: Resource Scheduling (Tool Type or single Tool)
15 min - 8 hrs
Semi-Dynamic, periodically

Level 4: Equipment Dispatch List (all details)
Real Time / Current state (sec)
Dynamic, real time, event driven, ...
Pre-Requisites & Requirements: Data quality and Accuracy

Data quality: Meaningful manufacturing control and optimization are only possible with sufficient detailed and correct data quality! This begins with the recognition of the actual problem ...

Often to deal with ...

• Manual Event Collection
• Maintenance schedule not available
• No / Inaccurate process times
• No tracking of rework, Loss, Bonus
• Need for cleaning, calibration, monitor run, etc. is not in the system
• No Process Capability Model
• Agreements on paper or by calling
• Many rules only in the minds of the staff
• ...

"Yes sir, you can absolutely trust those numbers"
Pre-Requisites & Requirements

Comprehensive Reporting and Monitoring

Reporting and Monitoring is fundamental to future optimization projects; the elements of manufacturing reporting should be **trustworthy, comprehensive and correct** and not "whitewash" the current state.

- **Lot related**
 - Accurate lot states and data collection
 - Lot-type specific tracking of productive time

- **Process related**
 - Consider low-runner technologies
 - Consider non productive lots & wafers
 - Measure both transport and wait time

- **Equipment related**
 - Don’t track test activities as productive
 - Precise tracking of states
 - Precise separation of status events
Pre-Requisites & Requirements

Simulation

Objective: Simulation of overall manufacturing systems and solutions with higher accuracy (e.g. transport, identification, product & material flow, dispatching, scheduling, prediction algorithm, etc.)

Why Simulation?
- Design of New Manufacturing Lines
- Efficiency Improvement for existing Lines
- Behavior Rules for High Automation Solution
- Dispatching [& Scheduling] Rules (EDDI)
- Real time KPI prediction by BI & Reporting (RI Suite)
- Automated Software / Configuration Testing
Pre-Requisites & Requirements
Simulation

Basic Features
• Event Driven simulation of discrete manufacturing including transportation and supply chain
• Process and Metrology tools, Resources (human, containers)
• Transport and storage tools (Material Flow)
• Material, Products, Routes, Operations (Process Flow) …
• Recipes, Capabilities, Rules, Activities
• Business Logic and Rules (e.g. dispatching)

Further Functional Capabilities
• Experiments & Scenarios
• Scheduling & Optimization
• Deliverable “Customer Model Result”
Pre-Requisites & Requirements
Integration [& Automation] of Dispatcher / Scheduler

What ...
• Master data (products, routes, operations, equipments, recipes, ...)
• Dynamic data (traceability, lot movement & state changes, equipment state changes, timers, cycle time, critical ration, due date, WIP & inventory, ...)
• Run-able and capable validation
• Exception handling (timer expiration, where-capable (WIP) ...)
• Process Capability Model and Consumption
• Kanban System
• ...

How ...
• SOA architecture (MoM or ESB based)
• Event Driven
• Publish / Subscribe
• Resynchronization strategy
• ...
Objective is a holistic solution for manufacturing optimization using a variety of components.

More details in the following presentations …